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Abstract
A bicomplex structure is associated with the Leznov–Saveliev equation of
integrable models. The linear problem associated with the zero-curvature
condition is derived in terms of the bicomplex linear equation. The explicit
example of a non-Abelian conformal affine Toda model is discussed in detail
and its conservation laws are derived from the zero-curvature representation of
its equation of motion.

PACS numbers: 02.20.Sv, 02.30.Ik, 05.45.-a, 11.10.-z, 11.25.Hf, 02.40.-k

1. Introduction

Two-dimensional Toda field theories are examples of relativistic integrable nonlinear systems
underlined by a Lie algebraic structure. Finite-dimensional Lie algebras are associated with
the conformal Toda models (see [1] for a review), whose basic representative is the Liouville
model. The affine Toda models are associated with the loop algebra (centreless Kac–Moody)
and are characterized by broken conformal symmetry. As basic examples within this class, we
find the sine–Gordon, Lund–Regge (complex sine–Gordon), general Abelian affine Toda and
homogeneous sine–Gordon [2]. Dyonic integrable models such as the singular non-Abelian
Toda models are also within this class [3]. Conformal affine Toda models [4] are related to
infinite-dimensional affine lie algebras (full Kac–Moody algebras). Such models are classified
according to a grading operator decomposing the Lie algebra into graded subspaces. The graded
structure is an important ingredient to obtain such models when employing the Hamiltonian
reduction procedure to the WZNW [1] and two-loop WZNW models [4]. Alternatively, the
field equations of these models can be obtained from the Leznov–Saveliev equation [5]. An
important fact about this equation is that it can be written as a zero-curvature condition. As a
consequence, under specific boundary conditions, there are infinite conserved charges. Also,
if the fundamental Poisson bracket relation holds [6], the involution condition among the
conserved charges is verified. An important ingredient in this construction is the classical
r-matrix satisfying the classical Yang–Baxter equation.

0305-4470/01/310425+09$30.00 © 2001 IOP Publishing Ltd Printed in the UK L425

http://stacks.iop.org/ja/34/L425


L426 Letter to the Editor

In recent papers [7], a structure called bicomplex was used to derive some integrable field
equations (e.g. sine–Gordon, nonlinear Schrödinger). It was argued that the bicomplex linear
equation could, in some cases, lead to chains of conserved charges.

In this paper we generalize the bicomplex structure to derive the Leznov–Saveliev equation
corresponding to an infinite-dimensional affine Lie algebra, which includes the non-Abelian
Toda equations. The linear problem associated with the zero-curvature condition is also derived
in terms of the bicomplex linear equation. Explicit construction, following the arguments of [8],
for the conserved charges of a specific A(1)2 non-Abelian Toda model is obtained.

2. Bicomplexes and Leznov–Saveliev equation

Let V = ⊕r�0V
r be an N0-graded linear space over C and d, δ : Mr → Mr+1 linear maps. If

d2 = δ2 = δd + dδ = 0, then this structure is called a bicomplex [7].
It is important to emphasize that nothing is said about Leibnitz rules. Let ξ 1, ξ 2 be a basis

for V 1 such that ξ 1ξ 1 = ξ 2ξ 2 = ξ 1ξ 2 + ξ 2ξ 1 = 0. In this case V 2 is one dimensional and
V = V 0 ⊕V 1 ⊕V 2. It is convenient to introduce light-cone variables in the two-dimensional
space–time with coordinates (t, x): z = (t + x)/2; z̄ = (t − x)/2; ∂ = ∂/∂z = ∂t + ∂x ;
∂̄ = ∂/∂z̄ = ∂t − ∂x . Consider a infinite-dimensional affine Lie algebra [9] Ĝ and constant
generators (ε+, ε−) ∈ Ĝ such that

[ε+, ε−] = µ1µ2Ĉ (2.1)

where Ĉ is the central charge generator and (µ1, µ2) ∈ C. The meaning of this choice will be
explained at the end of this section.

Let v1 = (v1
1ξ

1 + v1
2ξ

2) ∈ V 1 be arbitrary and define

δv1 ≡ (δv1
1)ξ

1 + (δv1
2)ξ

2 dv1 ≡ (dv1
1)ξ

1 + (dv1
2)ξ

2. (2.2)

Similarly, for v2 = v2
1,2ξ

1ξ 2 ∈ V 2 arbitrary, define

δv2 ≡ (δv2
1,2)ξ

1ξ 2 = 0 dv2 ≡ (dv2
1,2)ξ

1ξ 2 = 0. (2.3)

Let v0 ∈ V 0 be arbitrary and define the maps δ, d:

δv0 ≡ ∂̄v0ξ 1 + ε−v0ξ 2 dv0 ≡ −ε+v0ξ 1 + ∂v0ξ 2. (2.4)

An explicit computation reveals that for v0 ∈ V 0 arbitrary

δ2v0 = δ(∂̄v0)ξ 1 + δ(ε−v0)ξ 2

= ∂̄(∂̄v0)(ξ 1)2 + ε−∂̄v0ξ 2ξ 1 + ∂̄(ε−v0)ξ 1ξ 2 + (ε−)2v0(ξ 2)2

= ε−∂̄v0(ξ 2ξ 1 + ξ 1ξ 2) = 0.

That is,

δ2 = 0 d2 = 0 (δd + dδ)v0 = −µ1µ2Ĉv
0ξ 1ξ 2 (2.5)

where the last two equations are derived in a similar way. The last equality can be rewritten as

P 2 + (δd + dδ) = 0 (2.6)

where the map P : V r → V r+1 is defined by

Pv0 ≡ ε+v0ξ 1 + ε−v0ξ 2.

The action of P in V 1 and V 2 is defined in the same way as done for d, δ. Notice that the
maps (δ, d) do not define a bicomplex, unless the central charge is taken equal to zero, which
implies that we are working with the loop algebra. Alternatively, let g be an exponential of
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the generators belonging to Ĝ. Define a dressing [7] for d, introducing D : V r → V r+1 such
that, for arbitrary v0 ∈ V 0

Dv0 ≡ g−1d(gv0) = −g−1ε+gv0ξ 1 + (∂ + g−1∂g)v0ξ 2. (2.7)

Extending the action of D in V 1 and V 2 in the same way as before,

D2v0 = g−1d(gDv0) = g−1d(gg−1d(gv0)) = 0 → D2 = 0 (2.8)

using (2.5) and the fact that v0 is arbitrary. Now,

(δD +Dδ)v0 = {∂̄(g−1∂g)− [g−1ε+g, ε−]}v0ξ 1ξ 2. (2.9)

In order to obtain the Leznov–Saveliev equation there are two different options here. The
first is to take

g = B exp(−µ1µ2zz̄Ĉ) (2.10)

where B is a group element and impose

δD +Dδ = δd + dδ = −P 2. (2.11)

As a consequence,

∂̄(B−1∂B) = [B−1ε+B, ε−] ∂(∂̄BB−1) = [ε+, Bε−B−1]. (2.12)

Equations (2.12) correspond to the Leznov–Saveliev equation [5] in its two different versions.
Notice, however, that the maps (δ,D) defined in this way do not define a bicomplex.

Consider now the second option. Take

g = B → Dv0 ≡ B−1d(Bv0) = −B−1ε+Bv0ξ 1 + (∂ + B−1∂B)v0ξ 2 (2.13)

for v0 ∈ V 0 arbitrary. Extend the action in V 1 and V 2 as before and impose δD + Dδ = 0.
This leads to the Leznov–Saveliev equation again and, in this case, defines a bicomplex:

D2 = δ2 = δD +Dδ = 0. (2.14)

An explanation of (2.1) is important. If (ε+, ε−) are chosen in such a way that (2.1) holds,
then B0 = exp(µ1µ2zz̄Ĉ) is a particular solution of the Leznov–Saveliev equation (2.12). In
fact, this is a vacuum solution required by the dressing method as an input for non-trivial one
soliton solutions [3].

3. The bicomplex linear equation

A linear problem is associated with a given bicomplex in the following way [7]: suppose there
is T (0) ∈ V 0 such that DJ (0) = 0, where J (0) ≡ δT (0). Using (2.14), δJ (0) = 0. Defining
J (1) ≡ DT (0) and using (2.14), δJ (1) = 0, DJ (1) = 0. Suppose that J (1) can also be written
as J (1) = δT (1), T (1) ∈ V (0). Then, defining J (2) ≡ DT (1), δJ (2) = −DδT (1) = −DJ (1) = 0
and DJ (2) = 0. Continuing indefinitely such steps and defining a formal expansion
T ≡ ∑∞

m=0 ρ
mT (m), ρ ∈ C, the bicomplex linear equation is obtained:

δ(T − T (0)) = ρDT → δT = ρDT (3.1)

if δT (0) = 0. Using (2.4) and (2.13) in (3.1) results in

∂̄T = −ĀT ∂T = −AT A = −ρ−1ε− + B−1∂B Ā = ρB−1ε+B. (3.2)

Defining

ε̃± = ρ±1ε± [ε̃+, ε̃−] = [ε+, ε−] = µ1µ2Ĉ (3.3)
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the commutation relation acquires the same structure. In fact, even the Leznov–Saveliev
equation is invariant under (3.3). Now,

A = −ε̃− + B−1∂B Ā = B−1ε̃+B ∂Ā− ∂̄A + [A, Ā] = 0 (3.4)

is a standard representation of the connections associated with the zero-curvature equation
from which the Leznov–Saveliev equation is derived. The solution of (3.2) is [6]

T (t, y) = T0P
[

exp

(∫ (t,y)

Aµ dxµ
)]

(3.5)

where P is the path ordered operator and T0 is a constant. We should point out that the spectral
parameter ρ naturally arises under such a framework in (3.2). Given an affine Lie algebra
Ĝ and a grading operator Q̂ ∈ Ĝ follows a decomposition [10]: Ĝ = ⊕iĜi; [Q̂, Ĝi] =
iĜi; [Ĝi, Ĝj ] ∈ Ĝi+j . Here, i ∈ Z. The Hamiltonian reduction procedure applied to the
two-loop WZNW model [4] leads to the Leznov–Saveliev equation, where the group elementB
is associated with zero-grade generators of Ĝ and ε± are generators of grade ±j, j ∈ Z. That
is, these integrable models are classified in terms of the grading operators [10]. In particular,
the class of singular A(1)n non-Abelian Toda models has been constructed in [3] by choosing
the zero-grade subgroup Ĝ0 = SL(2)⊗ U(1)n−1. One can realize (3.3) as

ε̃± = exp

(
Q̂ ln ρ

j

)
ε± exp

(
−Q̂ ln ρ

j

)
. (3.6)

4. Conformal affine non-Abelian Toda model

In this section we consider the example of a A(1)2 conformal affine non-Abelian Toda model,
whose singular version was constructed in [3]. The zero-grade subgroup Ĝ0 = SL(2)⊗U(1) ⊂
SL(3) is parametrized by

B = exp(βχ̃E(0)−α1
) exp(βϕ1H

(0)
λ1

+ βϕ2h
(0)
2 + βνĈ + βηD̂) exp(βψ̃E(0)α1

) (4.1)

Q̂ = 2D̂ +H(0)λ2
ε+ = µ1(E

(0)
α2

+ E(1)−α2
) ε− = µ2(E

(0)
−α2

+ E(−1)
α2
) (4.2)

where D̂ is the homogeneous grading operator, h(0)i = 2αi.H (0)/α2
i are Chevalley generators,

H
(0)
i define the A2 Cartan subalgebra in the Weyl–Cartan basis, H(0)λi = 2λi.H (0)/α2

i , λi are

the fundamental weights of A2 satisfying 2αi · λj/α2
i = δi,j , that is, λi = ∑2

j=1(K
−1)i,jαj ,

K is the Cartan matrix of A2, (i, j) = (1, 2), β2 = −β2
0 = −(2π)/k and k is the WZNW

coupling constant. Also, the normalization α2 = 2 for all the roots is adopted (see [9] for a
description of affine Lie algebras).

The constant generators ε± have grade ±1 with respect to the generalized grading operator
Q̂ and B ∈ Ĝ0. This grading is an intermediate between the homogeneous grading Q̂ = D̂
and the principal grading Q̂ = 3D̂ + H(0)λ1

+ H(0)λ2
[10]. The Leznov–Saveliev equation leads

to the field equations corresponding to the Lagrangian density

L = (1/3)∂ϕ1∂̄ϕ1 + ∂ϕ2∂̄ϕ2 + (1/2)(∂ν∂̄η + ∂η∂̄ν) + exp(β(ϕ1 − ϕ2))∂χ̃ ∂̄ψ̃

−(µ1µ2/β
2)(exp(−2βϕ2) + exp(β(2ϕ2 − η)) + β2ψ̃χ̃ exp(β(ϕ1 + ϕ2 − η))).

(4.3)

In order to construct the singular non-Abelian Toda model, one observes that Ĝ0
0 ≡

H
(0)
λ1

∈ Ĝ0 is such that [Ĝ0
0, ε±] = 0, implying, from the Leznov–Saveliev equation,

the chiral conservation laws ∂ Tr[Ĝ0
0∂̄BB

−1] = ∂̄ Tr[Ĝ0
0B

−1∂B] = 0. These, in turn,



Letter to the Editor L429

allow the subsidiary constraints Tr[Ĝ0
0∂̄BB

−1] = Tr[Ĝ0
0B

−1∂B] = 0, responsible for the

elimination of the non-local field ϕ1, ∂ϕ1 = 3
2
βψ∂χ exp(−βϕ2)

7
; ∂̄ϕ1 = 3

2
βχ∂̄ψ exp(−βϕ2)

7
, where

χ = χ̃ exp(βϕ1/2);ψ = ψ̃ exp(βϕ1/2); 7 = 1 + (3/4)β2ψχ exp(−βϕ2). The classical
r-matrix associated with this model is discussed in [11]. The singular non-Abelian affine
Toda model, that is, without the field η (the field ν is only an auxiliary field) has already been
discussed in the literature. In [3] a complete spectrum of one- and two-soliton solutions was
obtained using the dressing transformations and the vertex operator construction. Also, the
T-dual version of this model was analysed and some results on semiclassical quantization were
shown.

5. Conservation laws

In order to derive the conservation laws for the model defined in (4.3), it is convenient to define
a new basis for A(1)2 :

Q̂ = 2D̂ +H(0)λ2
Ĉ A(2n) =

√
3
(
H
(n)
λ1

− (1/6)δn,0Ĉ
)

A(2n+1) = E(n)α2
+ E(n+1)

−α2

F(2n) = h(n)2 − (1/2)δn,0Ĉ F(2n+1) = E(n)α2
− E(n+1)

−α2

F +
(2n) = E(n)α1

F +
(2n+1) = E(n)α1+α2

F−
(2n) = E(n)−α1

F−
(2n−1) = E(n)−α1−α2

(5.1)

where n ∈ Z. The generators A(2n), A(2n+1) define a infinite-dimensional Heisenberg
subalgebra:

[A(2n), A(2m+1)] = 0 [A(2n), A(2m)] = 2nδn+m,0

[A(2n+1), A(2m+1)] = (2n + 1)δn+m+1,0.
(5.2)

Also, it is verified that

[F(2n+1), A(2m)] = [F(2n), A(2m)] = 0

[F +
(2n+p), A(2m)] = −

√
3F +

[2(n+m)+p] [F−
(2n−p), A(2m)] =

√
3F−

[2(n+m)−p]

[F +
(2n+p), A(2m+1)] = F +

[2(n+m+p)+1−p] [F−
(2n−p), A(2m+1)] = −F−

[2(n+m+1−p)+p−1]

[F(2n), A(2m+1)] = 2F[2(n+m)+1] [F(2n+1), A(2m+1)] = 2F[2(n+m+1)]

(5.3)

where p = (0, 1). Defining A = {A(2n+p), Q̂, Ĉ} and F = {F(2n+p), F
±
(2n±p)}, we see that

linear combinations of generators ∈ F are used to construct the vertex operators [10], used in
the dressing method [3].

The conservation laws follow from the zero-curvature equation by gauge transforming
A and Ā into ARab and ĀRab such that [ARab, Ā

R
ab] = 0 [8, 12]. It is convenient to define the

notation F = F+ ⊕ F− ⊕ F0; A = A+ ⊕ A− ⊕ A0, where the subspaces (F±,F0) have a
(positive/negative, zero) grade w.r.t. Q̂ and similarly to (A±,A0). Consider

A = Bε−B−1 Ā = −ε+ − ∂̄BB−1 gR =
[ ∞∏
m=1

exp(S−m)
]

exp(ξε−) (5.4)

where the connections result in the Leznov–Saveliev equation under the zero-curvature
equation and S−m is a linear combination of generators in F− and ξ(z, z̄) is a function of
z and z̄. Consider the gauge transformation:

AR = gRAg−1
R − ∂gRg−1

R =
−1∑

m=−∞
(A
R,m
A + AR,mF )

ĀR = gRĀg−1
R − ∂̄gRg−1

R =
1∑

m=−∞
ĀR,m

(5.5)
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where ĀR,m ∈ Ĝm, AR,mA has grade m and is a linear combination of generators in A and
similarly for AR,mF . Explicitly,

ĀR,1 = −ε+ ĀR,0 = −∂̄BB−1 + µ1µ2ξĈ − [S−1, ε
+]

ĀR,−1 = −∂̄(S−1 + ξε−)− [S−2, ε
+] − (1/2)[S−1, [S−1, ε

+]]
−[ξε− + S−1, ∂̄BB

−1] . . .

(5.6)

∂̄BB−1 = β[∂̄ϕ1 − (3/2)βχ̃ ∂̄ψ̃eβ(ϕ1−ϕ2)
]
H
(0)
λ1

+ β
[
∂̄ϕ2 + (1/2)βχ̃ ∂̄ψ̃eβ(ϕ1−ϕ2)

]
h
(0)
2

+β[∂̄νĈ + ∂̄ηD̂] + β∂̄ψ̃eβ(ϕ1−ϕ2)E(0)α1

+β
[
∂̄ χ̃ + βχ̃ ∂̄(ϕ1 − ϕ2)− β2χ̃2∂̄ψ̃eβ(ϕ1−ϕ2)

]
E
(0)
−α1

≡ J̄ (1)H (0)λ1
+ J̄ (2)h(0)2 + J̄ νĈ + J̄ ηD̂ + J̄ +E(0)α1

+ J̄−E(0)−α1
. (5.7)

Now, choose {S−m} and ξ such that

ĀR = −ε+ − J̄ ηD̂A − J̄ (1)H (0)λ1
+

−1∑
m=−∞

āR,mA(m)

D̂ ≡ D̂A + D̂F =
[
(1/2)Q̂−

√
3

12
A(0) − (1/6)Ĉ

]
+

[
−F(0)

4

]
.

(5.8)

The idea behind this structure is to solve for S−m such that all terms in F are eliminated.
Consider the zero-curvature equation and (AR, ĀR) as described. Note thatAR,mA = aR,mA A(m).
In terms of the new basis (5.1), we find

∂J̄ η = 0 ∂J̄ (1) = 0 a
R,−1
A = 0 ∂āR,−1 = 0

∂āR,−m − ∂̄aR,−mA − m
2
J̄ ηa

R,−m
A = 0 m � 2

A
R,m
F = 0 ∀m

(5.9)

where J̄ η and J̄ (1) are defined in (5.7). Under a gauge transformation defined by the group
element gRR there follows

gRR = exp

[
− ε+

∫ z̄

L̄

e− 1
2

∫ w̄
L̄
J̄ η(v̄) dv̄dw̄

]
exp

[
−
∫ z̄

L̄

(J̄ (1)(w̄)H
(0)
λ1

+ J̄ η(w̄)D̂A) dw̄

]
(5.10)

∂ĀRab − ∂̄ARab = 0 (5.11)

where

ARab ≡
−1∑

m=−∞
A
R,m
ab =

−1∑
m=−∞

a
R,m
A e− m

2

∫ z̄
L̄
J̄ η(v̄) dv̄A(m)

ĀRab ≡
−1∑

m=−∞
Ā
R,m
ab + aĈĈ (5.12)

=
−1∑

m=−∞
āR,me− m

2

∫ z̄
L̄
J̄ η(v̄) dv̄A(m) − µ1ā

R,−1e
1
2

∫ z̄
L̄
J̄ η(v̄) dv̄

∫ z̄

L̄

e− 1
2

∫ w̄
L̄
J̄ η(v̄) dv̄ dw̄ Ĉ

where L̄ ∈ R. Taking η(z, z̄) = η1(z) + η2(z̄) as a solution for the equation of motion for
η results in

∫ z̄
L̄
J̄ η(v̄) dv̄ = η2(z̄) − η2(L̄). This implies that all the terms in the Abelian

connections are local, except the term in Ĉ. Under periodic boundary conditions [8, 12], the
zero-curvature equation for the Abelianized connections implies an infinite set of conserved
charges:

∂tQ
R
m = 0 m � −1

QRm =
∫ s

−s
A
R,m
x,ab(t, y) dy A

R,m
x,ab = 1

2 (A
R,m
ab − ĀR,mab )

(5.13)
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where s ∈ R. In order to verify the involution condition, one starts from the fundamental
Poisson bracket relation (see for instance [11]):

{ASx(y, t)⊗ASx(z, t)}PB = [r, ASx (y, t)⊗ I + I ⊗ ASx(z, t)]δ(y − z)
ASx = 1

2S(A− Ā)S−1 − ∂xSS−1 S = e− 1
2 (βϕ1H

(0)
λ1

+βϕ2h
(0)
2 +βνĈ+βηD̂)e−βχ̃E(0)−α1

r = β2

4
(C+ − σC+)

σ (a ⊗ b) = b ⊗ a ∀(a, b) ∈ Ĝ

C+ =
∞∑
m=1

2∑
a,b=1

α2
b

2
(K−1)a,b

(
h(m)a ⊗ h(−m)b

)
+

1

2

∑
α>0

α2

2

(
E(0)α ⊗ E(0)−α

)

+
∞∑
m=1

∑
α>0

α2

2

[
E(m)α ⊗ E(−m)−α + E(m)−α ⊗ E(−m)α

]

(5.14)

where (A, Ā) are defined in (5.4). As a consequence [8, 12],

{tr T m, tr T n} = 0 T = P
[

exp

(∫ s

−s
Ax(t, y) dy

)]
(5.15)

(m, n) ∈ Z. Since tr T n are gauge invariant quantities, the previous relation holds also for the
Abelian connections ARx,ab. It then follows that [8, 12]

{QRm,QRn } = 0 ∀(n,m). (5.16)

Another set of conservation laws can be obtained in a completely analogous way by considering
positive grade expansion in (5.4). The relevant equations are summarized in the appendix.

6. Conclusion

In this paper a bicomplex structure associated with the generalized Leznov–Saveliev equation is
established. In this sense, the bicomplex structure is equivalent to the zero-curvature equation.
Also, the linear problem associated with the zero-curvature condition is derived in terms of
the bicomplex linear equation. The conservation laws for a non-Abelian Toda model were
obtained, generalizing the standard procedure in the Abelian models.

The author thanks J F Gomes, G M Sotkov and A H Zimerman for discussions and FAPESP
for financial support.

Appendix

Let

A = ε− + B−1∂B Ā = −B−1ε+B gL =
[ ∞∏
m=1

exp(Sm)

]
exp(ξ̄ε+)

where Sm is a linear combination of generators in F+ and ξ̄ (z, z̄) is a function. Under a gauge
transformation
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AL = gLAg−1
L − ∂gLg−1

L =
∞∑

m=−1

AL,m

ĀL = gLĀg−1
L − ∂̄gLg−1

L =
∞∑
m=1

(Ā
L,m
A + ĀL,mF )

whereAL,m ∈ Ĝm, ĀL,mA has gradem and is a linear combination of generators in A. Similarly
for ĀL,mF . Also,

B−1∂B = β[∂ϕ1 − (3/2)βψ̃∂χ̃eβ(ϕ1−ϕ2)]H(0)λ1
+ β[∂ϕ2 + (1/2)βψ̃∂χ̃eβ(ϕ1−ϕ2)]h(0)2

+β[∂νĈ + ∂ηD̂] + β∂χ̃eβ(ϕ1−ϕ2)E
(0)
−α1

+β[∂ψ̃ + βψ̃∂(ϕ1 − ϕ2)− β2ψ̃2∂χ̃eβ(ϕ1−ϕ2)]E(0)α1

≡ J (1)H (0)λ1
+ J (2)h(0)2 + J νĈ + J ηD̂ + J−E(0)−α1

+ J +E(0)α1
.

Solving for (Sm, ξ̄ ) such that

AL = ε− + J ηD̂A + J (1)H (0)λ1
+

∞∑
m=1

aL,mA(m)

the zero-curvature equation leads to

∂̄J η = 0 ∂̄J (1) = 0 ∂̄aL,1 = 0

Ā
L,m
F = 0 ∀m
∂ā
L,m
A − ∂̄aL,m +

m

2
J ηā

L,m
A = 0 m � 2

ā
L,1
A = 0

where ĀL,mA = āL,mA A(m).
Under another gauge transformation defined by

gLL = exp

[
ε−
∫ z

L

e− 1
2

∫ w
L
J η(v) dv dw

]
exp

[ ∫ z

L

(J (1)(w)H
(0)
λ1

+ J η(w)D̂A) dw

]

there follows

ĀLab ≡
∞∑
m=1

Ā
L,m
ab =

∞∑
m=1

ā
L,m
A e

m
2

∫ z
L
J η(v) dvA(m) ∂ĀLab − ∂̄ALab = 0

ALab ≡
∞∑
m=1

A
L,m
ab + bĈĈ =

∞∑
m=1

aL,me
m
2

∫ z
L
J η(v) dvA(m) − µ2a

L,1e
1
2

∫ z
L
J η(v) dv

×
∫ z

L

e− 1
2

∫ w
L
J η(v) dvdw Ĉ

where L ∈ R.
The conserved charges are obtained:

∂tQ
L
m = 0 m � 1

QLm =
∫ s

−s
A
L,m
x,ab(t, y) dy

where s ∈ R.
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